Sains Malaysiana 53(4)(2024): 807-819

http://doi.org/10.17576/jsm-2024-5304-07

 

Suatu Ulasan Mengenai Antioksidan, Sifat Fizikokimia, Manfaat Kesihatan dan Pengendalian Selepas Tuai Tomato Ceri

(A Review on Antioxidant, Physicochemical Properties, Health Benefits, and Postharvest Handling of Cherry Tomatoes)

 

MAIMUNAH MOHD ALI1,2,*, CHU CHIA YU1, NURFATIMAH MOHD THANI1,2 & M.N.A. UDA3

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Innovation Center for Confectionary Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Faculty of Mechanical Engineering & Technology, 02600 Arau, Perlis, Malaysia

 

Received: 18 August 2023/Accepted: 14 March 2024

 

Abstrak

Tomato ceri (Solanum lycopersicum var. cerasiforme) merupakan salah satu jenis buah-buahan yang semakin digemari di kalangan pengguna kerana kualiti dan kepelbagaian manfaat kesihatan yang tinggi. Ulasan ini bertujuan untuk menyediakan maklumat mendalam tentang beberapa aspek penting berkaitan tomato ceri termasuk fisiologi, potensi antioksidan, sifat fizikokimia, kandungan nutrien, manfaat kesihatan dan pengendalian selepas tuai yang berkesan. Tomato ceri mengandungi pelbagai jenis antioksidan seperti likopena, beta-karotena dan vitamin C. Antioksidan ini berperanan penting dalam menangani radikal bebas dan mengurangkan risiko penyakit degeneratif dan penyakit kardiovaskular. Di samping itu, ulasan ini juga meneliti sifat fizikokimia tomato ceri yang mempengaruhi kualiti dan nilai pemakanan buah ini. Pemahaman terhadap sifat fizikokimia adalah penting dalam menentukan kematangan dan kualiti tomato ceri terhadap rasa dan daya tarikan kepada pengguna. Tumpuan utama dalam kajian ini juga menjurus kepada potensi kesihatan tomato ceri dan manfaat dalam pemakanan manusia. Pengendalian selepas tuai yang berkesan turut dibincangkan untuk memastikan kualiti dan kebergunaan tomato ceri termasuk kaedah penyimpanan, pengangkutan dan pemprosesan yang tepat untuk memastikan buah kekal segar dan nutrisinya terpelihara. Maklumat yang dikumpulkan memberikan panduan penting kepada pihak industri dan pengguna dalam memahami potensi dan kegunaan tomato ceri sebagai sumber makanan yang bernilai tinggi dalam pemakanan seimbang. Diharapkan kajian ini akan mendorong peningkatan pengetahuan dan minat dalam penanaman dan penggunaan tomato ceri bagi kebaikan kesihatan dan kehidupan manusia.

 

Kata kunci: Antioksidan; pengendalian selepas tuai; pematangan;  sifat fizikokimia; tomato ceri

 

Abstract

Cherry tomatoes (Solanum lycopersicum var. cerasiforme) are one of the types of fruits that are increasingly popular among consumers because of their high quality and variety of health benefits. This review aims to provide in-depth information on several important aspects related to cherry tomatoes including physiological, antioxidant potential, physicochemical properties, nutrient contents, health benefits, and effective post-harvest handling. Cherry tomatoes contain various types of antioxidants such as lycopene, beta-carotene, and vitamin C. These antioxidants play an important role in dealing with free radicals and reducing the risk of degenerative diseases and cardiovascular diseases. In addition, this review also examines the physicochemical properties of cherry tomatoes that affect the quality and nutritional value of this fruit. The grasp of the physicochemical properties of cherry tomatoes is important in determining the ripeness and quality of the fruit in terms of taste and appeal to consumers. The main focus of this review is also aimed at the health potential of cherry tomatoes and its relevance in human nutrition. Effective post-harvest handling is also discussed to ensure the quality and usefulness of cherry tomatoes including proper storage, transportation, and processing methods to ensure the fruit remains fresh and nutrition is preserved. The information gathered provides important guidance to the industry and consumers in understanding the potential and uses of cherry tomatoes as a high-value food source in a balanced diet. It is hoped that this study will enhance the knowledge and interest in the cultivation and use of cherry tomatoes for the benefit of human health and life.

 

Keywords: Antioxidant activity; cherry tomato; physicochemical properties; postharvest handling; ripening

 

REFERENCES

Abd-Hamid, N.A., Naeem-Ul-Hassan, M., Zainal, Z. & Ismanizan, I. 2023. Persicaria minor F-Box gene PmF-Box1 indirectly affects Arabidopsis thaliana LOX-HPL pathway for green leaf volatile production. Sains Malaysiana 52(6): 1649-1670.

Al-Dairi, M., Pathare, P.B. & Al-Yahyai, R. 2021. Effect of postharvest transport and storage on color and firmness quality of tomato. Horticulturae 7(7): 1-15.

Albornoz, K., Chen, B., McCarthy, M., Zhang, L., Cantwell, M. & Beckles, D.M. 2020. Investigating postharvest chilling injury in tomato (Solanum lycopersicum L.) fruit using magnetic resonance imaging and 5-azacytidine, a hypomethylation agent. Acta Horticulturae 1278: 243-252.

Albornoz, K., Cantwell, M.I., Zhang, L. & Beckles, D.M. 2019. Integrative analysis of postharvest chilling injury in cherry tomato fruit reveals contrapuntal spatio- temporal responses to ripening and cold stress. Scientific Reports 9: 2795.

Anton, D., Matt, D., Pedastsaar, P., Bender, I., Kazimierczak, R., Roasto, M., Kaart, T., Luik, A. & Püssa, T. 2014. Three-year comparative study of polyphenol contents and antioxidant capacities in fruits of tomato (Lycopersicon esculentum Mill.) cultivars grown under organic and conventional conditions. Journal of Agricultural and Food Chemistry 62(22): 5173-5180.

Azali, N.Z., Hashim, H. & Teh, A.H. 2022. Effects of temperature and polyethylene plastic packaging on physicochemical changes and antioxidant properties of tomato during storage. Malaysian Applied Biology 51(5): 211-219.

Bayoumi, Y., Osman, S., Etman, A., El-Semellawy, E.S., Solberg, S. & El-Ramady, H. 2023. Regulating enzymatic antioxidants, biochemical and physiological properties of tomato under cold stress: A crucial role of ethylene. Agriculture (Switzerland) 13(2): 266.

Bhat, R. 2016. Impact of ultraviolet radiation treatments on the quality of freshly prepared tomato (Solanum lycopersicum) juice. Food Chemistry 213: 635-640.

Behboodian, B., Mohd Ali, Z., Ismail, I. & Zainal, Z. 2012. Postharvest analysis of lowland transgenic tomato fruits harboring HpRNAi- ACO1 construct. The Scientific World Journal 2012: 439870.

Correia, A.F.K., Loro, A.C., Zanatta, S., Spoto, M.H.F. & Vieira, T.M.F.S. 2015. Effect of temperature, time, and material thickness on the dehydration process of tomato. International Journal of Food Science 2015: 970724.

Dhital, R., Mora, N.B., Watson, D.G., Kohli, P. & Choudhary, R. 2018. Efficacy of limonene nano coatings on post-harvest shelf life of strawberries. LWT - Food Science and Technology 97: 124-134.

Domínguez, I., Lafuente, M.T., Hernández-Muñoz, P. & Gavara, R. 2016. Influence of modified atmosphere and ethylene levels on quality attributes of fresh tomatoes (Lycopersicon esculentum Mill.). Food Chemistry 209: 211-219.

Elias, A., Shahimi, S., Hashim, H., Abd. Mutalib, S. & Wan Mustapha, W.A. 2020. Perbandingan hasil tomato (Lycopersicon esculentum Mill. Cv MT1) menggunakan kompos tandan buah kosong (EFB) dan kompos najis lembu sebagai medium penanaman. Sains Malaysiana 49(11): 2745-2754.

FAOSTAT. 2023. Tomato Production in 2021. Crops/Regions/World List/Production Quantity. Corporate Statistical Database: UN Food and Agriculture Organization. https://www.fao.org/faostat/en/#data/QCL/visualize

Gebregziabher, A.A., Supriyadi, S., Indarti, S. & Setyowati, L. 2021. Texture profile and pectinase activity in tomato fruit (Solanum lycopersicum, Servo F1) at different maturity stages and storage temperatures. Planta Tropika: Jurnal Agrosains (Journal of Agro Science) 9(1): 20-34.

Gharezi, M., Joshi, N & Sadeghian, E. 2012. Effect of post harvest treatment on stored cherry tomatoes. Journal of Nutrition & Food Sciences 2: 157.

Gonçalves, D.C., Morgado, C.M.A., Aguiar, F.C.D.O., Silva, E.P., Correa, G.D.C., Nascimento, A.D.R. & Junior, L.C.C. 2020. Postharvest behavior and lycopene content of tomatoes at different harvest times. Acta Scientiarum 42: e48403.

Ha, H.T.N., Tai, N.V. & Thuy, N.M. 2021. Physicochemical characteristics and bioactive compounds of new black cherry tomato (Solanum lycopersicum) varieties grown in Vietnam. Plants 10(10): 2134.

Ilahy, R., Hdider, C., Lenucci, M.S., Tlili, I. & Dalessandro, G. 2011. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. Journal of Food Composition and Analysis 24(4-5): 588-595.

Iqbal, H.M., Ul, Q., Akbar, A., Arif, S., Yousaf, S., Khurshid, S., Hamid, N. & Sitara, U. 2022. Maturity dependent changes in post-harvest physiological, antioxidant and anti-microbial attributes of tomato. Pakistan Journal of Agricultural Research 35(1): 144-153.

Jagannath, A. & Satish, K. 2020. Multi target preservation as an effective post-harvest processing technology for the chemical and microbiological stability of pineapple (Ananus comosus). International Journal of Fruit Science 2020(Sup2): S650-S667.

Jorge, M.F., Nascimento, K.D.O.D., Junior, J.L.B., Silva, L.D.B.D. & Barbosa, M.I.M.J. 2017. Physicochemical characteristics, antioxidant capacity and phenolic compounds of tomatoes fertigated with different nitrogen rates. Revista Caatinga 30(1): 237-243.

Joung, M. & Shin, Y. 2021. Physicochemical quality, antioxidant compounds, and activity of ‘beta tiny’ and ‘ty nonari’ cherry tomatoes during storage. Korean Journal of Food Science and Technology 53(1): 63-71.

Kuscu, H., Turhan, A., Ozmen, N., Aydinol, P. & Demir, A.O. 2014. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Horticulture Environment and Biotechnology 55(2): 103-114.

Lu, T., Yu, H., Wang, T., Zhang, T., Shi, C. & Jiang, W. 2022. Influence of the electrical conductivity of the nutrient solution in different phenological stages on the growth and yield of cherry tomato. Horticulturae 8(5): 378.

Mohammed, O., Azzazy, M. & Badawe, S. 2021. Effect of some edible coating materials on quality and postharvest rots of cherry tomato fruits during cold storage. Zagazig Journal of Agricultural Research 48(1): 37-54.

Ngcobo, B.L., Bertling, I. & Clulow, A.D. 2021. Post-harvest alterations in quality and health-related parameters of cherry tomatoes at different maturity stages following irradiation with red and blue led lights. Journal of Horticultural Science and Biotechnology 96(3): 383-391.

Pérez-Marín, J., Issa-Issa, H., Clemente-Villalba, J., García-Garví, J.M., Hernández, F., Carbonell-Barrachina, A.A., Calín-Sánchez, A. & Noguera-Artiaga, L. 2021. Physicochemical, volatile, and sensory characterization of promising cherry tomato (Solanum lycopersicum L.) cultivars: Fresh market aptitudes of pear and round fruits. Agronomy 11(4): 618.

Petrović, I., Savić, S., Jovanović, Z., Stikić, R., Brunel, B., Sérino, S. & Bertin, N. 2019. Fruit quality of cherry and large fruited tomato genotypes as influenced by water deficit. Zemdirbyste 106(2): 123-128.

Prasanna, P.R., Panda, P., Banerjee, S., Dolui, S. & Bhattacharya, A. 2020. Antioxidative properties of cherry tomato. Journal of Crop and Weed 16(2): 8-17.

Sierra-Orozco, E., Shekasteband, R., Illa-Berenguer, E., Snouffer, A., Knaap, E.V.D., Lee, T.G. & Hutton, S.F. 2021. Identification and characterization of GLOBE, a major gene controlling fruit shape and impacting fruit size and marketability in tomato. Horticulture Research 8: 138.

Suka, I.E., Roslan, N.F., Chew, B.L., Goh, H.H., Zainal, Z. & Md Isa, N. 2018. Transformasi gen Proteolisis 6 (PRT6) berperantarakan Agrobacterium tumefaciens ke dalam kotiledon tomato kultivar Micro Tom. Sains Malaysiana 47(7): 1465-1471.

Tilahun, S., Park, D.S., Taye, A.M. & Jeong, C.S. 2017. Effects of storage duration on physicochemical and antioxidant properties of tomato (Lycopersicon esculentum Mill.). Horticultural Science & Technology 35(1): 88-97.

Taofik, A., Ismail, N., Gerhana, Y.A., Komarujazaman, K. & Ramdhani, M.A. 2018. Design of smart system to detect ripeness of tomato and chili with new approach in data acquisition. In IOP Conference Series: Materials Science and Engineering 288: 012028.

Tsakiri, S., Sofia, T., Nifakos, K., Tsaniklidis, G., Vakros, J., Delis, C. & Spiliopoulos, I.K. 2020. Comparison on vine and post-harvest ripening on antioxidant compounds and antioxidant activities of hydroponically grown cherry tomatoes. European Journal of Horticultural Science 85(6): 422-429.

Tsouvaltzis, P., Gkountina, S. & Siomos, A.S. 2023. Quality traits and nutritional components of cherry tomato in relation to the harvesting period, storage duration and fruit position in the truss. Plants 12(2): 315.

Vallverdú-queralt, A., Odriozola-serrano, I., Oms-oliu, G. & Lamuela-raventós, R.M. 2013. Impact of high-intensity pulsed electric fields on carotenoids profile of tomato juice made of moderate-intensity pulsed electric field-treated tomatoes. Food Chemistry 141: 3131-3138.

Wang, L., Baldwin, E., Luo, W., Zhao, W., Brecht, J. & Bai, J. 2019. Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments. Postharvest Biology and Technology 154: 11-20.

Wang, S., Qiang, Q., Xiang, L., Fernie, A.R. & Yang, J. 2023. Targeted approaches to improve tomato fruit taste. Horticulture Research 10(1): uhac229.

Zhao, Y., Li, L., Gao, S., Wang, S., Li, X. &  Xiong, X. 2023. Postharvest storage properties and quality kinetic models of cherry tomatoes treated by high-voltage electrostatic fields. LWT 176: 114497.

 

*Corresponding author; email: maimunahmma@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

previous